Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Buildings ; 12(3):355, 2022.
Article in English | ProQuest Central | ID: covidwho-1760396

ABSTRACT

The transportation and surface deposition of aerosols from sneezing in a small indoor farmers’ market are studied numerically. The effects of numbers and locations of the entrances and exits of the market are discussed under the condition of natural convection. The results indicate that aerosols leave the indoor environment more quickly when two doors are designed face to face on the walls perpendicular to the natural wind direction compared to other natural ventilation strategies. The concentrations of aerosols accumulated on the surfaces of the stalls and human bodies inside the market are also lower. In this case, the risk of contacting the virus is relatively low among susceptible individuals in the indoor farmers’ markets. Moreover, opening more doors on the walls parallel to the natural wind direction is not beneficial for the fast exhaust of aerosols.

2.
Fractal and Fractional ; 6(2):98, 2022.
Article in English | ProQuest Central | ID: covidwho-1715226

ABSTRACT

In this article, the effects of Newtonian heating along with wall slip condition on temperature is critically examined on unsteady magnetohydrodynamic (MHD) flows of Prabhakar-like non integer Maxwell fluid near an infinitely vertical plate under constant concentration. For the sake of generalized memory effects, a new mathematical fractional model is formulated based on a newly introduced Prabhakar fractional operator with generalized Fourier’s law and Fick’s law. This fractional model has been solved analytically and exact solutions for dimensionless velocity, concentration, and energy equations are calculated in terms of Mittag-Leffler functions by employing the Laplace transformation method. Physical impacts of different parameters such as α, Pr, β, Sc, Gr, γ, and Gm are studied and demonstrated graphically by Mathcad software. Furthermore, to validate our current results, some limiting models such as classical Maxwell model, classical Newtonian model, and fractional Newtonian model are recovered from Prabhakar fractional Maxwell fluid. Moreover, we compare the results between Maxwell and Newtonian fluids for both fractional and classical cases with and without slip conditions, showing that the movement of the Maxwell fluid is faster than viscous fluid. Additionally, it is visualized that both classical Maxwell and viscous fluid have relatively higher velocity as compared to fractional Maxwell and viscous fluid.

SELECTION OF CITATIONS
SEARCH DETAIL